
GATS Page 1 – 13 G. Santor

GATS Companion to:
Program Memory Layout
Author: Garth Santor
Editors: Trinh Hān, Lianne Wong
Copyright Dates: 2018-01-30, 2019
Version: 1.5.0 (2019-01-27)

Overview
Where is the code, variables, literals, and other program elements stored in computer memory? Knowing

how and where program elements are stored, when and how they are assigned a location, and how long

they persist, will help a developer understand:

• Memory use, and memory leaks.

• The efficiency of data access operations.

• The efficiency of data allocation and deallocations.

• The robustness of a memory reference.

Simplified Memory Model
In our examples we will use a simplified version of Microsoft Windows 32-bit default virtual address

space. It is typical of 32-bit virtual memory operating systems, like OS/X, Linux, and UNIX.

A virtual memory system uses hardware and software to map virtual memory addresses to physical

memory addresses. Each user program is broken up into memory pages (for example: 4KiB in size) that

the operating system maps to physical pages in RAM with the help of the CPU’s memory management

unit (MMU). This allows our software to be programmed for an idealized memory layout, and not the

reality of actual physical memory layouts which can be discontiguous and be located on different devices

like GPUs.

An added benefit of this approach, is that virtual memory pages from different processes can be mapped

to physical memory pages simultaneously (just not to the same physical memory pages). This allows

multiple processes to share physical memory giving the

appearance of many programs running at the same time. Best of

all, none of the program need to consider that other programs are

sharing the memory with them.

Virtual Address Space
A 32-bit address space provides 4GiB of physical memory,

which maps to 4GiB of virtual memory. The virtual address

space is then divided into kernel space and user space.

The operating system will run in the protected kernel space,

whereas our user process will run in the unprotected process

space.

Kernel Space
(2GiB)

Process Space
(2GiB)

0xFFFFFFFF

0x80000000

0x7FFFFFFF

0x00000000

GATS Page 2 – 13 G. Santor

Note the addresses for each space. The process space addresses always have a zero in the most

significant bit; the kernel space addresses always have a one in the most significant bit.

In Microsoft Windows, the boundary between process space, and kernel space can be adjusted with ‘4-

gigabyte tuning’ (4GT) to provide a 3GiB process space, and a 1GiB kernel space. With Windows 7, the

amount can be customized to any process space size between 2048MiB (2GiB) and 3072MiB (3GiB).

Process Space
User processes (such as application programs) live in the process space. The process space has its own

internal structure. Again, I’m going to present a simplified, somewhat generic layout. The model

assumes a single execution thread, again for simplicity.

Our process space model is broken into the following sections:

Interrupt Vector Table
The interrupt vector table is read-only block of addresses (read/write to the kernel) listing the interrupt

handlers for the system. It is not relevant to this discussion other than to recognize why our processes

don’t start at location zero.

Text Segment
Alias: Code Segment

The text segment contains code, and depending

on the compiler, literal values are embedded

along with the code.

Text Segments are placed below the heap and

the stack to help prevent memory overruns from

corrupting the code. Where operating systems

support memory segment protection, the text

segment can be tagged as read-only.

Since text pages are never modified, the text

segment can also be shared between multiple

identical processes.

Data Segment
The data segment contains variables that have a

lifespan that begins when the process is

launched and extends until the process

terminates. It is in turn divided into three parts.

The first part holds read-only variables that are

initialized when constructed, the second part

holds initialized modifiable variables, and the

third holds uninitialized variables. The size of

the data segment is determined at compile time,

and that size is fixed for the life of the process.

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
Pr

o
ce

ss
 (

2G
iB

)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

GATS Page 3 – 13 G. Santor

Command Line & Environment
The command line & environment section resides at the top of the process space. It is placed here since

its size won’t be known until the process is loaded and the command-line and environment information

are passed from the operating system.

Why is this? The operating system maintains an environment that contains information about the context

in which your program runs. This includes the current working directory, environment variables, and

command-line arguments. These values usually have system wide or account wide settings, but can be

overridden by temporary changes to the local shell, the user providing command-line arguments, or by

invoking process functions such as spawn() that facilitate the customization of the environment when

programmatically launching an application.

The Heap & Stack
The heap and stack provide the system’s dynamic memory. Traditionally, the heap and stack share what

memory remains after the fixed allocations have completed. The heap supports free allocations from the

pool of available RAM usually growing up from the data segment. The stack supports LIFO allocations

growing down from the bottom of the command line and environment segment.

The stack is normally managed implicitly by the process code and direct machine code support. Stack

push and pop operations are standard on CPUs, push moving the stack address towards address zero, pop

moving the stack address away from zero.

The heap has a dedicated heap manager containing data structures and algorithms designed to track and

manage the blocks of memory allocated from the pool of memory it manages. The heap is different from

the stack in that the memory allocations can occur anywhere in the heap, and deallocations can occur in

any order.

Memory allocated on the heap is not necessarily deallocated when the referencing variable goes out of

scope. Heap allocations in C and C++ must be explicitly deallocated. Failure to do so results in a

memory leak. To prevent this, most objects that use dynamic memory utilize destructors that implement

the deallocation code. For general dynamic allocations, smart pointers (pointers that deallocate what they

point to when they go out of scope) are recommended.

Java and managed C++ (such as C++.NET) use garbage-collection instead of explicit deallocations.

While this does prevent memory leaks, it doesn’t completely resolve all memory problems. Developers,

no longer worrying about memory leaks, often give up thinking about memory issues at all. While the

memory doesn’t technically leak, the same loss of memory can occur by holding on to the memory block

for longer than necessary. Managed languages have a memory hording problem! Programmers that don’t

pay attention to the scope of their reference variables may create them in too broad a scope that hold on to

them much longer than is necessary. While the memory block doesn’t leak, it none-the-less consumes

resource that could be allocated elsewhere.

Deallocations can cause the heap to become discontiguous (i.e. there can be unallocated blocks of

memory in between the allocated blocks of memory). Small unallocated blocks can be difficult to reuse,

as they can only be recycled by allocating them to the same size or smaller block. The inefficiency

caused by excessive number a small, unallocated blocks is called memory fragmentation.

GATS Page 4 – 13 G. Santor

C/C++ and Java Memory Allocation Examples
Let’s examine C and C++ code samples and connect the elements to their storage locations. Where the

examples also apply to Java, it will be noted.

Interpreting Java memory allocations is a little more difficult since the memory model spans the compiler

and the JVM. Where C and C++ compilers understand the system level memory model, the whole point

of Java is to abstract the hardware as much as possible. The Java compiler compiles to an abstract

memory model which then maps to the memory model of that system’s JVM. JVM developers have a

fair amount of leeway in its implementation.

However, understanding Java allocations can be done in the context of C/C++ allocations (after all, the

JVM is usually written in C).

Code [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
a

l M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The machine code of function main is stored in the

text segment.

int main() {

 return 0;

}

GATS Page 5 – 13 G. Santor

Literals [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
a

l M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Literals are handled in one of two ways: stored in

the text segment with the code that assigns the

literal, or stored in the data segment as a read-only

entity.

The compiler chooses a storage location by several

criteria:

1. Is the literal’s memory location referenced (e.g.

string literals are handled by pointing to the

block of memory containing the sequence of

characters)?
2. Can the literal be embedded with the machine

instruction that performs the assignment?

int main() {

 string str = "Hello";

 int number = 42;

}

Local variables [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The local variable number is allocated on the stack,

and deallocated when the function terminates. The
literal 42 is embedded in the machine code of the

text segment.

int main() {

 int number = 42;

}

GATS Page 6 – 13 G. Santor

Function parameters [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Function parameters are passed on the stack.

Parameters can be passed by value, by reference, or

by pointer. All result in the parameter being placed

on the stack.

void square(int x, int& result) {

 result = x * x;

}

int main() {

 int n;

 square(5, n);

}

Pass-by-value parameters have their parameters

placed on the stack. Pass-by-reference parameters
have the address of the calling scope variable placed

on the stack. Internally, reference parameters are

passed to the function as pointers.

Local, short-lived variables [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The local variable sum is allocated on the stack as

would the local variable i. However, short-termed

variables such as the loop variant i are often never

allocated in RAM, but instead a CPU register is

assigned to implement the variable.

#include <iostream>

int main() {

 int sum = 0;

 for (int i = 0; i < 10; ++i)

 sum += i;

 std::cout << i << std::endl;

}

If enough free CPU registers are available, the sum

variable may also be implemented

GATS Page 7 – 13 G. Santor

Global variables [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The global variable global is allocated in the data

segment, specifically the uninitialized data segment.

#include <iostream>

int global;

int main() {

 int local;

}

Global variables – initialized [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

The global variable global is allocated in the data

segment, specifically the initialized data segment.

The variable is initialized when the process loads if
the data is plain-old-data (POD).

#include <iostream>

int global = 42;

int main() {

 int local;

}

GATS Page 8 – 13 G. Santor

Reference variables (non-parameter) [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Reference variables declared in the same scope as

the variable they reference are merely aliases for the

referenced variable. As a result, they share the same

memory location as the variable they reference.

#include <iostream>

int global = 42;

int& globalRef = global;

int main() {

 int local;

 int& localRef = local;

}

Constants [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Constants generally follow the same allocation rules

as variables; global constants are placed in the Read-

only Initialized Data Segment; local constants on the

stack.

However, optimizing compilers are free to analyze

the code. If the compiler can determine that there
are no references to the location of the constant

(only the value of the constant is used), then

constant can be implemented as if it were a literal.

const int cglobal = 42;

const char str[] = "constant";

int main() {

 const int clocal = 5;

}

GATS Page 9 – 13 G. Santor

constexpr [C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

C++ 11’s constexpr expression appears like a

constant in the source code, but like a literal in the

machine code. Constant expressions are guaranteed

to be evaluated at compile time.

#include <iostream>

int main() {

 constexpr int clocal = 5;

}

Local static variables [C, C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Local static variables are treated like local variables

for their visibility scope, but like global variables for

their location and lifespan.

#include <iostream>

int count() {

 static int c = 0;

 return ++c;

}

int main() {

 static int n;

 n = count();

}

GATS Page 10 – 13 G. Santor

Dynamic memory/pointers [C, C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Dynamic memory allocators (new, malloc, etc.)

allocate memory on the heap. The referencing

variable (pointer) is handled like a typical variable.

int main() {

 int* p = new int[10];

}

Note that the memory allocated in C/C++ is not
disposed of automatically. You’ll need to call

delete to return the memory to the heap. Java

will garbage-collection the object once it has
determined that the object is no longer being

referenced.

Dynamic objects [C++]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Dynamic objects such as STL container classes have

a fixed portion and a dynamic portion. The fixed

portion is handled like all other variables, the

dynamic portion is on the heap.

vector<int> gv(10);

int main() {

 vector<int> v(10);

}

GATS Page 11 – 13 G. Santor

Class attributes [C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Classes allocate with the same rules as primitive

data types with a few twists. If the object is declared

locally, then the attributes are allocated on the stack.

If the object is declared globally or static, its

attributes are allocated in the data segment.

class Foo {

 int a = 0;

};

Foo bar;

int main() {

 Foo barLocal;

 static Foo bars;

}

The class definition itself is not stored in memory.

It’s methods however are stored in the text segment,

as they are code.

Static class attributes [C++, Java]

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Static class attributes override the class’s normal

allocation location and follow the rules of global

variable allocations.

class Foo {

 int a;

 static int b;

};

int main() {

 Foo bar;

}

GATS Page 12 – 13 G. Santor

Appendix A: C Memory Layout

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
e

m
o

ry
 (

4
G

iB
)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
e

rn
e

l S
p

ac
e

 (
2

G
iB

)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

Code

Literals

Local variables

Function Parameters

Uninitialized Global

variables

Initialized Global

variables

Local static variables

Dynamic (malloc,

calloc, realloc)

GATS Page 13 – 13 G. Santor

Terminology
POD Plain-old-data. A variable that can be copied by duplicating the binary

representation of the variable. No additional process is required to copy the value.

process A running program.

virtual memory A logical memory system that maps virtual memory locations to physical memory

locations. This permits more than one process to operate in memory at the same

time, without the process knowing of the other processes existence.

References
• C dynamic memory allocation – https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

