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Overview 
Where is the code, variables, literals, and other program elements stored in computer memory?  Knowing 

how and where program elements are stored, when and how they are assigned a location, and how long 

they persist, will help a developer understand: 

• Memory use, and memory leaks. 

• The efficiency of data access operations. 

• The efficiency of data allocation and deallocations. 

• The robustness of a memory reference. 

Simplified Memory Model 
In our examples we will use a simplified version of Microsoft Windows 32-bit default virtual address 

space.  It is typical of 32-bit virtual memory operating systems, like OS/X, Linux, and UNIX.   

A virtual memory system uses hardware and software to map virtual memory addresses to physical 

memory addresses.  Each user program is broken up into memory pages (for example: 4KiB in size) that 

the operating system maps to physical pages in RAM with the help of the CPU’s memory management 

unit (MMU).  This allows our software to be programmed for an idealized memory layout, and not the 

reality of actual physical memory layouts which can be discontiguous and be located on different devices 

like GPUs. 

An added benefit of this approach, is that virtual memory pages from different processes can be mapped 

to physical memory pages simultaneously (just not to the same physical memory pages).  This allows 

multiple processes to share physical memory giving the 

appearance of many programs running at the same time.  Best of 

all, none of the program need to consider that other programs are 

sharing the memory with them. 

Virtual Address Space 
A 32-bit address space provides 4GiB of physical memory, 

which maps to 4GiB of virtual memory.  The virtual address 

space is then divided into kernel space and user space. 

The operating system will run in the protected kernel space, 

whereas our user process will run in the unprotected process 

space. 

Kernel Space
(2GiB)

Process Space
(2GiB)

0xFFFFFFFF

0x80000000

0x7FFFFFFF

0x00000000
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Note the addresses for each space.  The process space addresses always have a zero in the most 

significant bit; the kernel space addresses always have a one in the most significant bit. 

In Microsoft Windows, the boundary between process space, and kernel space can be adjusted with ‘4-

gigabyte tuning’ (4GT) to provide a 3GiB process space, and a 1GiB kernel space.  With Windows 7, the 

amount can be customized to any process space size between 2048MiB (2GiB) and 3072MiB (3GiB). 

Process Space 
User processes (such as application programs) live in the process space.  The process space has its own 

internal structure.  Again, I’m going to present a simplified, somewhat generic layout.  The model 

assumes a single execution thread, again for simplicity. 

Our process space model is broken into the following sections: 

Interrupt Vector Table 
The interrupt vector table is read-only block of addresses (read/write to the kernel) listing the interrupt 

handlers for the system.  It is not relevant to this discussion other than to recognize why our processes 

don’t start at location zero. 

Text Segment 
Alias: Code Segment 

The text segment contains code, and depending 

on the compiler, literal values are embedded 

along with the code. 

Text Segments are placed below the heap and 

the stack to help prevent memory overruns from 

corrupting the code.  Where operating systems 

support memory segment protection, the text 

segment can be tagged as read-only. 

Since text pages are never modified, the text 

segment can also be shared between multiple 

identical processes. 

Data Segment 
The data segment contains variables that have a 

lifespan that begins when the process is 

launched and extends until the process 

terminates.  It is in turn divided into three parts.  

The first part holds read-only variables that are 

initialized when constructed, the second part 

holds initialized modifiable variables, and the 

third holds uninitialized variables.  The size of 

the data segment is determined at compile time, 

and that size is fixed for the life of the process. 
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Command Line & Environment 
The command line & environment section resides at the top of the process space.  It is placed here since 

its size won’t be known until the process is loaded and the command-line and environment information 

are passed from the operating system. 

Why is this?  The operating system maintains an environment that contains information about the context 

in which your program runs.  This includes the current working directory, environment variables, and 

command-line arguments.  These values usually have system wide or account wide settings, but can be 

overridden by temporary changes to the local shell, the user providing command-line arguments, or by 

invoking process functions such as spawn() that facilitate the customization of the environment when 

programmatically launching an application. 

The Heap & Stack 
The heap and stack provide the system’s dynamic memory.  Traditionally, the heap and stack share what 

memory remains after the fixed allocations have completed.  The heap supports free allocations from the 

pool of available RAM usually growing up from the data segment.  The stack supports LIFO allocations 

growing down from the bottom of the command line and environment segment. 

The stack is normally managed implicitly by the process code and direct machine code support.  Stack 

push and pop operations are standard on CPUs, push moving the stack address towards address zero, pop 

moving the stack address away from zero. 

The heap has a dedicated heap manager containing data structures and algorithms designed to track and 

manage the blocks of memory allocated from the pool of memory it manages.  The heap is different from 

the stack in that the memory allocations can occur anywhere in the heap, and deallocations can occur in 

any order. 

Memory allocated on the heap is not necessarily deallocated when the referencing variable goes out of 

scope.  Heap allocations in C and C++ must be explicitly deallocated.  Failure to do so results in a 

memory leak.  To prevent this, most objects that use dynamic memory utilize destructors that implement 

the deallocation code.  For general dynamic allocations, smart pointers (pointers that deallocate what they 

point to when they go out of scope) are recommended. 

Java and managed C++ (such as C++.NET) use garbage-collection instead of explicit deallocations.  

While this does prevent memory leaks, it doesn’t completely resolve all memory problems.  Developers, 

no longer worrying about memory leaks, often give up thinking about memory issues at all.  While the 

memory doesn’t technically leak, the same loss of memory can occur by holding on to the memory block 

for longer than necessary.  Managed languages have a memory hording problem!  Programmers that don’t 

pay attention to the scope of their reference variables may create them in too broad a scope that hold on to 

them much longer than is necessary.  While the memory block doesn’t leak, it none-the-less consumes 

resource that could be allocated elsewhere. 

Deallocations can cause the heap to become discontiguous (i.e. there can be unallocated blocks of 

memory in between the allocated blocks of memory).  Small unallocated blocks can be difficult to reuse, 

as they can only be recycled by allocating them to the same size or smaller block.  The inefficiency 

caused by excessive number a small, unallocated blocks is called memory fragmentation. 
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C/C++ and Java Memory Allocation Examples 
Let’s examine C and C++ code samples and connect the elements to their storage locations.  Where the 

examples also apply to Java, it will be noted. 

Interpreting Java memory allocations is a little more difficult since the memory model spans the compiler 

and the JVM.  Where C and C++ compilers understand the system level memory model, the whole point 

of Java is to abstract the hardware as much as possible.  The Java compiler compiles to an abstract 

memory model which then maps to the memory model of that system’s JVM.  JVM developers have a 

fair amount of leeway in its implementation. 

However, understanding Java allocations can be done in the context of C/C++ allocations (after all, the 

JVM is usually written in C). 

Code [C, C++, Java] 
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The machine code of function main is stored in the 

text segment. 

 
 

int main() { 

 

  return 0; 

 

} 
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Literals [C, C++, Java] 
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Literals are handled in one of two ways: stored in 

the text segment with the code that assigns the 

literal, or stored in the data segment as a read-only 

entity. 

The compiler chooses a storage location by several 

criteria: 

1. Is the literal’s memory location referenced (e.g. 

string literals are handled by pointing to the 

block of memory containing the sequence of 

characters)? 
2. Can the literal be embedded with the machine 

instruction that performs the assignment? 

int main() { 

  string str = "Hello"; 

 

  int number = 42; 

} 

 

 

Local variables [C, C++, Java] 
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The local variable number is allocated on the stack, 

and deallocated when the function terminates.  The 
literal 42 is embedded in the machine code of the 

text segment. 

 
int main() { 

 

  int number = 42; 

 

} 
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Function parameters [C, C++, Java] 
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Function parameters are passed on the stack.  

Parameters can be passed by value, by reference, or 

by pointer.  All result in the parameter being placed 

on the stack. 

 

void square(int x, int& result) { 

  result = x * x; 

} 

 

int main() { 

  int n; 

  square(5, n); 

} 

 

Pass-by-value parameters have their parameters 

placed on the stack.   Pass-by-reference parameters 
have the address of the calling scope variable placed 

on the stack.  Internally, reference parameters are 

passed to the function as pointers. 

 

Local, short-lived variables [C, C++, Java] 
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The local variable sum is allocated on the stack as 

would the local variable i.  However, short-termed 

variables such as the loop variant i are often never 

allocated in RAM, but instead a CPU register is 

assigned to implement the variable. 

 
#include <iostream> 

int main() { 

 

  int sum = 0; 

  for (int i = 0; i < 10; ++i) 

    sum += i; 

   

  std::cout << i << std::endl; 

} 

 
If enough free CPU registers are available, the sum 

variable may also be implemented 
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Global variables [C, C++] 
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The global variable global is allocated in the data 

segment, specifically the uninitialized data segment. 

 
#include <iostream> 

 

int global; 

 

int main() { 

 

  int local; 

 

} 

 
 

 

Global variables – initialized [C, C++] 
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The global variable global is allocated in the data 

segment, specifically the initialized data segment.  

The variable is initialized when the process loads if 
the data is plain-old-data (POD). 

 
#include <iostream> 

 

int global = 42; 

 

int main() { 

 

  int local; 

 

} 
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Reference variables (non-parameter) [C, C++] 
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Reference variables declared in the same scope as 

the variable they reference are merely aliases for the 

referenced variable.  As a result, they share the same 

memory location as the variable they reference. 
 
#include <iostream> 

 

int global = 42; 

int& globalRef = global; 

 

int main() { 

 

  int local; 

  int& localRef = local; 

 

} 

 

 

 

Constants [C, C++] 
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Constants generally follow the same allocation rules 

as variables; global constants are placed in the Read-

only Initialized Data Segment; local constants on the 

stack. 

However, optimizing compilers are free to analyze 

the code.  If the compiler can determine that there 
are no references to the location of the constant 

(only the value of the constant is used), then 

constant can be implemented as if it were a literal. 

 
const int cglobal = 42; 

const char str[] = "constant"; 

 

int main() { 

 

  const int clocal = 5; 

 

} 
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constexpr [C++] 

Text Segment

Data Segment (Read-only Initialized)

Stack

U
se

r 
P

ro
ce

ss
 (

2
G

iB
)

V
ir

tu
al

 M
em

o
ry

 (
4

G
iB

)

OS

Heap

Command Line + Environment

Interrupt Vector Table (1KiB)

K
er

n
el

 S
p

ac
e 

(2
G

iB
)

Data Segment (Uninitialized)

Data Segment (Read/write Initialized)

 

C++ 11’s constexpr expression appears like a 

constant in the source code, but like a literal in the 

machine code.  Constant expressions are guaranteed 

to be evaluated at compile time.  

 
#include <iostream> 

 

 

int main() { 

 

  constexpr int clocal = 5; 

 

} 

 

 

 

Local static variables [C, C++] 
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Local static variables are treated like local variables 

for their visibility scope, but like global variables for 

their location and lifespan.  

 
#include <iostream> 

 

 

int count() { 

  static int c = 0; 

  return ++c; 

} 

 

int main() { 

 

  static int n; 

  n = count(); 

 

} 
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Dynamic memory/pointers [C, C++, Java] 
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Dynamic memory allocators (new, malloc, etc.) 

allocate memory on the heap.  The referencing 

variable (pointer) is handled like a typical variable. 

 
int main() { 

 

  int* p = new int[10]; 

} 

 

Note that the memory allocated in C/C++ is not 
disposed of automatically.  You’ll need to call 

delete to return the memory to the heap.  Java 

will garbage-collection the object once it has 
determined that the object is no longer being 

referenced. 

 

Dynamic objects [C++] 
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Dynamic objects such as STL container classes have 

a fixed portion and a dynamic portion.  The fixed 

portion is handled like all other variables, the 

dynamic portion is on the heap. 

 
vector<int> gv(10); 

 

int main() { 

 

  vector<int> v(10); 

} 
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Class attributes [C++, Java] 
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Classes allocate with the same rules as primitive 

data types with a few twists.  If the object is declared 

locally, then the attributes are allocated on the stack.  

If the object is declared globally or static, its 

attributes are allocated in the data segment. 

 
class Foo { 

  int a = 0; 

}; 

 

Foo bar; 

 

int main() { 

 

  Foo barLocal; 

  static Foo bars; 

} 

 
The class definition itself is not stored in memory.  

It’s methods however are stored in the text segment, 

as they are code. 

 

Static class attributes [C++, Java] 
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Static class attributes override the class’s normal 

allocation location and follow the rules of global 

variable allocations. 

 
class Foo { 

  int a; 

  static int b; 

}; 

 

int main() { 

 

  Foo bar; 

} 
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Appendix A: C Memory Layout 
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Terminology 
POD Plain-old-data.  A variable that can be copied by duplicating the binary 

representation of the variable.  No additional process is required to copy the value. 

process A running program. 

virtual memory A logical memory system that maps virtual memory locations to physical memory 

locations.  This permits more than one process to operate in memory at the same 

time, without the process knowing of the other processes existence. 

 

References 
• C dynamic memory allocation – https://en.wikipedia.org/wiki/C_dynamic_memory_allocation 

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

