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Overview 
Searching and sorting are some of the most fundamental algorithms in computing, Donald Knuth devotes 

an entire volume of The Art of Computer Programming to it.  The subjects naturally go together because 

they operated on the same data structures and the efficiency of searches are dependent on the order of the 

data.  Here I will present many common searching sorting algorithms and provide a commentary for 

programmers. 

Searching 
Search algorithms are used to retrieve data stored within a data structure, or calculated in the search space 

of a problem domain.  We’ll only be looking that retrieval algorithms here. 

Linear Searching 
The simplest search algorithm is the linear search; which starts at one end of the data structure and through brute 

force, tests each element in turn until the target has been found. 

Time Complexity 
Best Case 𝑂(1) If we are lucky, the first element we look at will be the target element. 
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Worst Case 𝑂(𝑛) The worst case is finding the target element at the very end of the search. 

 

Implementation – Array 
This implementation returns the index of the target element if found, or the size of the vector if not. 
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function LINEAR-SEARCH( A, key ) returns a natural number 

for i ←  1 to length{A} – 1 do 

 if A[i] = key 

  then return i 

return length{A} 

Implementation – Pointer 
This implementation returns the index of the target element if found, or the size of the vector if not. 

function LINEAR-SEARCH( beg, end, key ) returns a pointer 

current ← beg 

while current ≠ end do 

 if value{current} = key 

  then return current 

return end 

 

Binary Searching 
Binary search runs in O(logB2Bn) time on sorted data sets.  An unsuccessful search requires   1log +N  iterations of 

the loop or calls to the function. 

Time Complexity 
Best Case 𝑂(1) If we are lucky, the first element we look at will be the target element. 

 
Average 
Case 

𝑂(log2 𝑛) Each iteration or recursion eliminates half of the remaining elements. 
 

Worst Case 𝑂(log2 𝑛) The worst case is to narrow down the list to a sub-list of one. 

 

Implementation – Array, Recursive 
This implementation returns the index of the target element if found, or the size of the vector if not. 

function BINARY-SEARCH( A, key, low, high ) returns a natural number 

if low ≤ high  

 then middle ← (low + high) div 2 

  if key = A[middle] then return middle 

  else if key < A[middle] then return BINARY-SEARCH( A, key, low, middle – 1 ) 

  else  return BINARY-SEARCH( A, key, middle + 1, high ) 

 else return length{A} 

Implementation – Array, Iterative 
This implementation returns the index of the target element if found, or the size of the vector if not. 

function BINARY-SEARCh( A, key, low, high ) returns a natural number 
while low ≤ high do 

 middle ← (low + high) div 2 

 if key = A[middle] then return middle 

 else if key < A[middle] then high ← middle – 1 

 else  low ← middle + 1 

return length{A} 

Implementation – Array, Iterative 
A potential speed improvement can be found by reducing the amount of branching inside the loop.  In this version 

we always search down to a sub-list of size one, then test to see if the remaining element is the key. 
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function BINARY-SEARCH( A, key, low, high ) returns a natural number 

while low < high do 

 middle ← (low + high) div 2 

 if A[middle] < key 

  then low ← middle + 1 
  else high ← middle – 1 

if low = high and A[ low ] = key 

 then return low 

 else return length{A} 

Sorting Algorithms 
Introduction 
Sorting is an operation that places things into some natural order. 

Sorts are said to be stable if the elements with the same key value appear in the output collection in the same order 

that they appear in the input collection.  Sort stability is important when sorting a collection several times, each time 

by a different key. (E.g. firstly by day, secondly by month, lastly by year) 

Name, best, average, worst, memory, stable, method, comparison, notes 

Name Best Average Worst Memory Stable Method Comparison Notes 

Bogosort 𝑂(𝑛) 𝑂(𝑛 ∙ 𝑛!) unbounded 𝑂(1) No n/a Yes  

Bubble 𝑂(𝑛) — 𝑂(𝑛2) 𝑂(1) Yes Exchanging Yes Short-circuit variant 

Cocktail 𝑂(𝑛) — 𝑂(𝑛2) 𝑂(1) Yes Exchanging Yes  

Comb 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(1) No Exchanging Yes  

Heapsort 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(1) No Selection Yes  

Insertion 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) Yes Insertion Yes Can be performed 
on serialized input 

Merge 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛) Yes Merging Yes Can be 
implemented for 
external sorting 

Permutation 𝑂(𝑛) 𝑂(𝑛 ∙ 𝑛!) 𝑂(𝑛 ∙ 𝑛!) 𝑂(1) No Selection No  

Pigeonhole 𝑂(𝑛 + 2𝑘) 𝑂(𝑛 + 2𝑘) 𝑂(𝑛 + 2𝑘) 𝑂(2𝑘) Yes Tabulation No Assumes 𝑛 < 2𝑘  

Quicksort 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛2) 𝑂(log2 𝑛) No Partitioning Yes  

Selection 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) No Selection Yes  

Shell’s — — 𝑂(𝑛1.5) 𝑂(1) No Insertion Yes  

Is-Sorted – random-access container 
‘IS-SORTED’ determines if a collection is sorted.  The first algorithm is implemented for a random-access collection. 

function IS-SORTED( A ) returns a Boolean 

for i ←  1 to length{A} – 1 do 

 if A[i] < A[i – 1] then  

  return false 

return true 
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Is-Sorted – forward iterators 
function IS-SORTED( beg, end ) returns a Boolean 

if beg = end 

 then return true 

previous ← beg 

current ← successor{beg} 

while current ≠ end do 

 if value{current} < value{previous} 

  then return false 

 previous ← current 

 current ← successor {current} 

return true 

Bogo Sort 
‘BOGO-SORT’ randomly shuffles the elements of the collection until satisfies ‘IS-SORTED’. 

procedure BOGO-SORT( A ) 

while not IS-SORTED( A ) 

 RANDOMIZE( A ) 

Is this the worst sorting algorithm of all time?  Perhaps its not even an algorithm but is more likely an heuristic, and 

a bad one. 

References 
http://en.wikipedia.org/wiki/Bogosort 

Bubble Sort 
‘Bubble-Sort’ is the worst sorting algorithm in common use.  It is both move intensive and comparison intensive.  

However, its lack-lustre performance has never severely deterred novices from using it. 

… in fact, the Bubblesort has hardly anything to recommend it except its catchy name. (Wirth, 

1976) 

Algorithm 
1. repeat for as many times as there are elements less one; 

2.  for each element pair; 

3.   compare KBiB with KBi+1B, interchanging RBiB with RBi+1B if the keys are out of order. 

Where K represents keys and R represents records. 

Implementation – random-access container (brute force) 
This first implementation is a brute-force translation of the algorithm for a random-access container. 

procedure BUBBLE-SORT( A ) 

for pass ← 1 to length{A} – 1 do 

 for idxPair ← 1 to length{A} – 1 do 
  if A[idxPair] < A[idxPair – 1] 

   then exchange A[idxPair] ↔ A[idxPair – 1] 

This can easily be improved upon by recognizing that each pass places a minimum of one element into its sorted 

place, (i.e. the sorted portion grows from the end to the beginning).  Any further testing of those elements is 

redundant. 

Implementation – random-access container (standard) 
This second implementation removes those extra comparisons. 

http://en.wikipedia.org/wiki/Bogosort
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procedure BUBBLE-SORT( A ) 

for pass ← 1 to length{A} – 1 do 

 for idxPair ← 1 to length{A} – pass do 

  if A[idxPair] < A[idxPair – 1] 

   then exchange A[idxPair] ↔ A[idxPair – 1] 

The next refinement removes the calculation within the inner loop’s termination condition. 

procedure BUBBLE-SORT( A ) 

for idxEndOfPass ← length{A} – 1 downto 1 do 

 for idxPair ← 1 to idxEndOfPass do 

  if A[idxPair] < A[idxPair – 1] 

   then exchange A[idxPair] ↔ A[idxPair – 1] 

Implementation – bi-directional iterators 
Now we can write the equivalent implementation for bi-directional iterators. 

procedure BUBBLE-SORT( beg, end ) 

firstPair ←  successor{beg} 

while firstPair  end do 

 previous ←  beg 

 current ←  firstPair 

 while current  end do 

  if value{current} < value{previous} 

   then exchange value{current} ↔ value{previous} 

  previous ← current 
  current ← successor{current} 

 end ← predecessor{end} 

Bubble sort’s performance on sorted and partially sorted lists can be dramatically improved by tracking the 

occurrences of exchanges in each pass.  If no exchanges occur, the then the list is already sorted and the algorithm 

could immediately be terminated. 

This algorithm performs particularly poorly on reversed lists, since every element pair is swapped on every pass.  

The tests simply add overhead. 

Implementation – random-access container (short-circuit) 
procedure BUBBLE-SORT( A ) 

for idxEndOfPass ←  length{A} – 1 downto 1 do 

 hasSwapped ←  false 

 for idxPair ←  1 to idxEndOfPass do 

  if A[idxPair] < A[idxPair – 1] 
   then exchange A[idxPair] ↔ A[idxPair – 1] 

    hasSwapped ←  true 

 if hasSwapped is false 

  then return 

Implementation – bi-directional iterators (short-circuit) 
The bi-directional iterator implementation: 
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procedure BUBBLE-SORT( beg, end ) 

firstPair ←  successor{beg} 

hasSwapped ←  true 

while firstPair  end and hasSwapped do 

 hasSwapped ←  false 

 previous ←  beg 

 current ←  firstPair 

 while current  end do 
  if value{current} < value{previous} 

   then exchange value{current} ↔ value{previous} 

    hasSwapped ←  true 

  previous ← current 

  current ← successor{current} 

 end ← predecessor{end} 

References 
http://en.wikipedia.org/wiki/Bubble_sort 

Cocktail-shaker 
The cocktail-shaker sort is a variation of the bubble sort.  The difference is that the bubble passes are performed in 

both directions as opposed to bubble sort’s forward only passes. 

Algorithm 
1. while the unsorted range is greater than 1 

2.  for each element pair in the unsorted range; 

3.   compare KBiB with KBi+1B, interchanging RBiB with RBi+1B if the keys are out of order. 

4.  for each element pair in the unsorted range; 

5.   compare KBiB with KBi-1B, interchanging RBiB with RBi-1B if the keys are out of order. 

6.  reduce the unsorted range by 1 at each end 

Where K represents keys and R represents records. 

Implementation – random-access container (naïve) 
The first implementation is the direct translation of the algorithm. 

procedure COCKTAIL-SHAKER-SORT( A ) 

idxFirstUnsorted ←  0 

idxLastUnsorted ←  length{A} – 1 

idxCurrent ←  idxFirstUnsorted 

while idxFirstUnsorted < idxLastUnsorted do 

 while idxCurrent < idxLastUnsorted do 

  if A[idxCurrent + 1] < A[idxCurrent] 

   then  exchange A[idxCurrent + 1] ↔ A[idxCurrent] 

  idxCurrent ← idxCurrent + 1 

 idxLastUnsorted ← idxLastUnsorted – 1 

 while idxCurrent > idxFirstUnsorted do 
  if A[idxCurrent – 1] > A[idxCurrent]  

   then exchange A[idxCurrent – 1] ↔ A[idxCurrent] 

  idxCurrent ← idxCurrent – 1 

 idxFirstUnsorted ← idxFirstUnsorted + 1 

In the case of an empty container, idxLastUnsorted is initialized to –1.  However, if the index type is unsigned, 

numeric underflow occurs causing to be initialized to std::numeric_limits<unsigned>::max() – a clearly invalid 

location.  The algorithm must either be implemented using a signed range type or be rewritten. 

http://en.wikipedia.org/wiki/Bubble_sort
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Implementation – random-access container (safe) 
procedure COCKTAIL-SHAKER-SORT( A ) 

idxFirstUnsorted ← 0 

idxEnd ← length{A}  

idxCurrent ← idxFirstUnsorted 

while idxFirstUnsorted < idxEnd do 

 idxCurrent ← idxCurrent + 1 
 while idxCurrent < idxEnd do 

  if A[idxCurrent] < A[idxCurrent – 1] 

   then exchange A[idxCurrent – 1] ↔ A[idxCurrent] 

  idxCurrent ← idxCurrent + 1 

 idxEnd ← idxEnd – 1 

 idxCurrent ← idxCurrent – 1 

 while idxCurrent > idxFirstUnsorted do 

  if A[idxCurrent] < A[idxCurrent – 1] 

   then exchange A[idxCurrent – 1] ↔ A[idxCurrent] 

  idxCurrent ← idxCurrent – 1 

 idxFirstUnsorted ← idxFirstUnsorted + 1 

Implementation – bi-directional iterators 
procedure COCKTAIL-SHAKER-SORT( beg, end ) 

if beg = end then  

 return 

previous ←  beg 

next ←  successor{beg} 

while next ≠ end do 

 while next ≠ end do 

  if value{previous} > value{next} 

   then exchange value{previous} ↔ value{next} 

  previous ← successor{previous} 

  next ← successor{next} 

 previous ← predecessor{previous} 

 next ← predecessor{next} 
 end ← predecessor{end} 

 if previous  = beg  

  then return 

 repeat 

  previous ← predecessor{previous} 

  next ← predecessor{next} 

  if value{previous} > value{next} 

   then exchange value{previous} ↔ value{next} 

 until previous = beg 

 previous ← successor{previous} 

 next ← successor{next} 

 beg ←  successor{beg} 

References 
http://en.wikipedia.org/wiki/Cocktail_sort 

Comb Sort 
The comb sort is a variation of the bubble sort first published in Byte by Steven Lacy and Richard Box (Stephen 

Lacy and Richard Box, "A Fast, Easy Sort", Byte, April 1991, p.315).  Comb sort can also be thought of as a 

variation of Shell’s sort.  It uses Shell’s idea of enhancing the performance of the insert by inserting in steps or 

shells of a magnitude greater than 1.  The comb sort uses bubble passes that compare non-contiguous elements; 

thereby moving an element closer to its correct resting spot in fewer moves.  Lacy and Box investigated the gap 

http://en.wikipedia.org/wiki/Cocktail_sort
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reduction factor and found that shrink factor of 1.3 was ideal and that further performance gains occur in the gap 

values of 9 and 10 are exchanged for 11. 

Implementation – random-access container 
procedure COMB-SORT( A ) 

gap ←  length{A} 

loop 

  
 if gap = 9 or gap = 10 

  then gap ← 11 

 else if gap < 1 

  then gap ← 1 
 swapped ← false 

 for i ← 0 to length{A} – gap – 1 do 

  j ← i + gap 

  if A[ i ] > A[ j ] 

   then exchange A[ i ] ↔ A[ j ] 

     swapped ← true 

 if gap = 1 and not swapped  

  then return 

Note that the container can not be empty if the range type is unsigned. 

References 
http://en.wikipedia.org/wiki/Comb_sort 

Count Sort 
See ‘Pigeonhole Sort’ 

Heap Sort 
‘Heap sort’ is what you would call a ‘good performer’.  Its sorts in ( log )O n n  time – always! 

The heap sort works by first arranging all of the elements of the container into a heap.  A heap is binary tree in 

which the key values of the child nodes are both less than the key value of the parent node.   

A binary tree structure can be implemented in a 1-base array by employing the relationship of left-child-index is 

double the parent-index, right-child-index is one greater than the left-child-index. 

Once formed, the heap can be converted to a sorted list by swapping the element at the top of the heap with the last 

element in the heap; shrinking the heap by one; then fixing the heap by recursively adjusting the top element until 

the heap has been restored. 

Implementation – random-access container (iterative) 
procedure HEAP-SORT( A ) 

heapSize ← length{A} 

for parentNode ← heapSize div 2 downto 1 do 

 HEAPIFY( A, parentNode, heapSize ) 

for idx ← length{A} – 1 downto 1 do 
 exchange A[0] ↔ A[idx] 

 heapSize ← heapSize – 1 

 HEAPIFY( A, 1, heapSize ) 

1.  

1.3gap gap   

http://en.wikipedia.org/wiki/Comb_sort
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procedure HEAPIFY( A, parentNode, heapSize ) 

loop 

 leftNode ← parentNode × 2 

 if leftNode > heapSize 

  then return 
 if A[leftNode – 1] > A[parentNode – 1] 

  then largestNode ← leftNode 

  else largestNode ← parentNode 

 rightNode ← leftNode + 1 

 if rightNode ≤ heapSize and A[rightNode – 1] > A[largestNode – 1] 

  then largestNode ← rightNode 

 if largestNode ≠ parentNode 

  then exchange A[largestNode – 1] ↔ A[parentNode – 1] 

   parentNode ← largestNode 

  else return 

Limited Heap Sort 
In web search engines we often want only the k best results presented in a sorted list, where there may have been as 

many as n > k results.  There is no point in storing all n results, sorting them all then throwing away the n – k excess 

elements. 

A limited heap sort, sorts the k highest elements of a set of n elements.  We first feed k elements into the heap and 

build an ascending order heap (the lowest value at the top of the heap).  For the remaining elements we compare the 

new element to the top element of the heap replacing the top element if the new element is larger – then heapify.  

Once all elements have been tested and inserted into the heap, we complete the heap sort producing an ascending 

order list. 

We can then reverse the list to produce a descending order list if necessary. 

References 
http://en.wikipedia.org/wiki/Heapsort 

Insertion Sort 
Insertion sort is an attempt to minimize the number of comparisons performed during a sort by shifting through 

sorted space when positioning an element. 

Algorithm 
1. for each element EBiB in the array; 

2.  we assume that the preceding elements EB1B, …, EBi-1B have already been sorted; 

3.  we insert EBiB, into its proper place among the sorted records 

where E represents keys 

Implementation – random-access container 
Here is an implementation for a random-access container. 

procedure INSERTION-SORT( A ) 

for idxFirstUnsorted ←  1 to length{A} – 1 do 

 idx ←  idxFirstUnsorted 

 while idx > 0 and A[idx] < A[idx – 1] do 

  exchange A[idx] ↔ A[idx – 1] 

  idx ← idx – 1 

Notes 
For empty arrays the first line of the algorithm results in an index being created that has a negative value (i.e. –1).  If 

your implementing language’s index type is an unsigned type this statement would produce numeric underflow. 

http://en.wikipedia.org/wiki/Heapsort
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Implementation – bi-directional iterators 
procedure INSERTION-SORT( beg, end ) 

if beg = end then 

 return 

firstUnsorted ← beg 

loop 

 firstUnsorted ← successor{firstUnsorted} 
 if firstUnsorted = end  

  then return 

 element ←  firstUnsorted 

 previous ← predecessor{element} 

 while element ≠ beg and value{element} < value{previous} do 

  exchange value{element} ↔ value{previous} 

  element ← predecessor{element} 

  previous ← predecessor{previous} 

This implementation does present a challenge when converted to code since many modern implementations of 

iterators have ‘safe’ debug versions that test to see that the iterators stay within bounds.  This algorithm violates that 

rule on the final line. 

Implementation – bi-directional iterators (safe) 
procedure INSERTION-SORT( beg, end ) 

if beg = end then 

 return 

firstUnsorted ← beg 

loop 

 firstUnsorted ← successor{firstUnsorted} 

 if firstUnsorted = end  

  then return 

 element ←  firstUnsorted 

 previous ← element 

 while element ≠ beg do 

  previous ← predecessor{previous} 

  if value{element} ≥ value{previous} 
   then break 

  exchange value{element} ↔ value{previous} 

  element ← predecessor{element} 

This is adjustment produces some ugly code, but languages that permit assignment inside loop conditions can 

significantly clean up the implementation: 

Implementation – bi-directional iterators (elegant) 
procedure INSERTION-SORT( beg, end ) 

if beg = end then 

 return 

firstUnsorted ← beg 

loop 

 firstUnsorted ← successor{firstUnsorted} 

 if firstUnsorted = end  
  then return 

 previous ← element ←  firstUnsorted 

 while element ≠ beg and value{element} < value{ previous ← predecessor{previous} } do 

  exchange value{element} ↔ value{previous} 

  element ← predecessor{element} 

References 
http://en.wikipedia.org/wiki/Insertion_sort 

http://en.wikipedia.org/wiki/Insertion_sort
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Merge Sort 
Merge sort is the original divide and conquer sort.  It executes in O(n logB2B n) time whether sorting vectors, linked 
lists or files.  The vector and file implementations require additional storage of equal size to process the merge; the 

linked list version does not. 

Merge sort can be processed using recursion or iteration.  The recursive version is not easily adapted to files while 

the iterative version adapts easily to all data types and stores. 

Algorithm 
1. If the list size is 0 or 1, return. 

2. Split the list into 2 equal parts. 

3. Merge-Sort each half-list separately. 

4. Merge the two sorted lists into a single list. 

Implementation – Random-access Container Using Recursion 
procedure MERGE-SORT( A, beg, end ) 

if end – beg > 1 then 
 split ←  (beg + end) div 2 

 MERGE-SORT( A, beg, split ) 

 MERGE-SORT( A, split, end ) 

 MERGE( A, beg, split, end ) 

 

procedure MERGE( A, low, high, end) 

create a output array D the same size of A 

lowWalker ←  low 

highWalker ←  high 

destWalker ←  low 

while lowWalker < high and highWalker < end 

 if A[lowWalker] < A[highWalker] 

  then D[destWalker] ←  A[lowWalker] 

   lowWalker ← lowWalker + 1 

  else D[destWalker] ←  A[highWalker] 
   highWalker ← highWalker + 1 

 destWalker ← destWalker + 1 

if lowWalker < high 

 then D[destWalker .. end – 1] ←  A[lowWalker .. high – 1] 

 else  D[destWalker .. end – 1] ←  A[highWalker .. end – 1] 

A ←  D 

Optimization – Pre-allocate the copy vector. 
The biggest performance hit in the preceding implementation is the constant reallocations of the hold array – D.  The 

simple solution is to have the driver function create D and then pass it to the merge function. 
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Implementation – Random-access Container Using Iteration 
procedure MERGE-SORT( A ) 

sublistSize ←  1 

while sublistSize < length{A} do 

 low ←  0 

 while low < length{A} do 

  high ←  low + sublistSize 
  end ←  high + sublistSize 

  if end > length{A} 

   then end ←  length{A} 

    if high > length{A} 

     then high ← length{A} 

  if high ≠ length{A} 

   then MERGE( A, low, high, end ) 

  low ← low + 2  sublistSize 

 sublistSize ← 2  sublistSize 

Optimization – Random-access Container Using Iteration with Short-
circuiting 
Another optimization is the recognition that there is unnecessary copying during the merge when the lower half of 

the array empties first.  The data remaining in the top half of the array is already in the correct position, so copying 

those elements to the temporary store would be pointless. 

 

hgfedcba §§§§lkji

Array A

Array D

highlow end

lowWalker highWalker

destWalker

ponm

hgfedcba §§§§lkji

Array A

Array D

highlow

end

lowWalker highWalker

destWalker

ponm

ponm

copy

lowWalker high destWalker end

Array A´
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procedure MERGE( A, low, high, end ) 

lowWalker ← low 

highWalker ← high 

destWalker ← low 

while lowWalker < high and highWalker < end 

 if A[lowWalker] < A[highWalker]  

  then D[destWalker] ← A[lowWalker] 

   lowWalker ← lowWalker + 1 

  else D[destWalker] ← A[highWalker] 

   highWalker ← highWalker + 1 

 destWalker ← destWalker + 1 

if lowWalker < high  

 then A[destWalker .. end – 1] ← A[lowWalker .. high – 1] 

A[low .. destWalker – 1] ← D[low .. destWalker – 1] 

 

Note that the block copy in line 12 must be a high to low copy since the ranges could overlap. 

Implementation – Linked List with Iteration 
procedure MERGE-SORT( L ) 

sublistSize ← 1 

while sublistSize < length{L} do 

 empty the holdList 

 while L is not empty do 
  split a list of no greater size than sublistSize from the front of L 

  split another list of no greater size than sublistSize from the front of L 

  Merge the two lists 

  splice the merged list onto the end of the holdList 

 exchange holdList ↔ L 

 sublistSize ← sublistSize  2 

References 
http://en.wikipedia.org/wiki/Merge_sort 

Ordersort 
The ordersort algorithm sorts by determining the order in which elements should be arranged, then arranging them 

into that order.  The arrangement order is determined by locating the immediate predecessors and successors of each 

element. 

References 
C/C++ Users Journal (September 2005) 

Permutation Sort 
Permutation sort is a trial-and-error type sort.  Try every possible arrangement of the elements – at least one of them 

is sorted. 

Pigeonhole Sort 
Pigeonhole sort is a special case sort capable of sorting in linear time.  Counting sort requires that the input array 

being sorted only contains ordinal values in a known and finite range.  For our discussion we will assume that values 

are in the range [0..k].  The idea is to count the number of instances of each value in the input array.  Then for each 

value detected in the input array, write back to the array the correct number of instances detected.  However, we 

write the input values back in their sorted order. 

http://en.wikipedia.org/wiki/Merge_sort
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One pass of the input array is required to accumulate the frequency table of values, and one more pass is required to 

write the values back to the array.  This simple approach destroys the original elements and is therefore of little 

practical use.  The sort can be modified to copy the original values from one array to another. 

Implementation – random-access container 
procedure PEGEONHOLE-SORT( A, k ) 

for i ← 0 to k do 

 C[ i ] ← 0 
for i ← 0 to length{A} – 1 do 

 C[ A[ i ] ] ← C[ A[ i ] ] + 1 

j ← 0 

for i ← 0 to length{C} – 1 do 

 while C[ i ] > 0 do 

  C[ i ] ← C[ i ] – 1 

  A[ j ] ← i 

  j ← j + 1 

References 
http://en.wikipedia.org/wiki/Pigeonhole_sort 

Quick sort 
‘Quick-sort’, as named by its originator – Sir Anthony (C.A.R.) Hoare (Oxford University) is one of the smallest, 

fastest and most elegant algorithms known. 

The basic idea is to perform ‘swapping passes’ instead of search and swap.  During each ‘swapping-pass’, low-value 

elements in the top half of the list are swapped for high-value elements in the bottom half of the list.  Eventually the 

swapping pass would come to a middle point such that all of the values in the bottom half of the list will have a 

value lower than every value in the top half of the list.  The reverse – that all of the values in the top half of the list 

will have a value higher than every value in the bottom half of the list – is necessarily true.  The two sub-lists could 

then be individually ‘quick-sorted’. 

Algorithm 
1. If the size of the list is 0 or 1, return. 

2. Pick any element from the list.  Call this value ‘pivot.’ ( Av ) 

3. Partition the list into two distinct groups, such that the lower list only contains elements that are less than or 

equal to the pivot value and the upper list only contains elements that are greater than or equal to the pivot 

value. 

  vxvAxL −= |  and   vxvAxU −= |  

4. Return the sequential join of Quicksort(L) and Quicksort(U) 

Implementation – random-access container (low is pivot) 
The pivot value will be partitioned into the top half of the range. 

procedure QUICK-SORT( A, low, high ) 

if low < high 

 then pivot ← PARTITION( A, low, high ) 

  QUICK-SORT( A, low, pivot ) 

  QUICK-SORT( A, pivot + 1, high ) 

The following partition algorithm returns the high index of the lower partition. 

http://en.wikipedia.org/wiki/Pigeonhole_sort
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function PARTITION( A, low, high ) returns integer 

pivotValue ← A[low] 

low ← low – 1 

high ← high + 1 

loop 
 repeat 

  low ← low + 1 

 until A[low] ≥ pivotValue 

 repeat 

  high ← high – 1 

 while A[high] ≤ pivotValue 

 if low < high  

  then exchange A[low] ↔ A[high] 

  else return high 

Implementation – random-access container (random pivot) 
Choosing the first element as a pivot is as good as any other for a randomly scrambled list.  However, it is terrible 

for a sorted or reverse-sorted list, causing each swapping pass to correctly place only one element – making the sort 

perform in O(nP

2
P) time.  A randomly chosen pivot often achieves the needed variation to avoid degenerate 

partitioning. 

function PARTITION( A, low, high ) returns integer 

pivot ← random value in the range [ low, high ] 

pivotValue ← A[pivot] 
low ← low – 1 

… 

Implementation – random-access container (middle pivot) 
An alternative to the random pivot is the mid-point pivot. 

function PARTITION( A, low, high ) returns integer 

pivot ← (low + high) div 2 

pivotValue ← A[pivot] 

low ← low – 1 

… 

Implementation – random-access container (Hoare) 
Hoare’s implementation is an optimization of the mid-point pivot that merges the partition function and the 

recursive function.  Most significantly it does not move the pivot value to the beginning of the sub-list. 

procedure QUICK-SORT( A, low, high ) 

lo ← low 

hi ← high 

pivotValue  ← A[ (low + high) div 2 ] 
while lo ≤ hi do 

 while A[ lo ] < pivotValue do 

  lo ← lo + 1 

 while A[ hi ] > pivotValue do 

  hi ← hi – 1 

 if lo ≤ hi  

  then exchange A[ lo ] ↔ A[ hi ] 

   lo ← lo + 1 

   hi ← hi – 1 

if low < hi 

 then QUICK-SORT( A, low, hi ) 
if lo < high  

 then QUICK-SORT( A, lo, high ) 
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Implementation – medium of 3 
On randomly ordered data, the midpoint pivot is no better than the low pivot, or any other single element as pivot.  

Medium of three improves the odds by selecting median of the first, last, and middle elements.  The hope is that the 

probability of all three being skewed to one end or the other is significantly lower than the midpoint method. 

procedure QUICK-SORT( A, low, high ) 

lo ← low 

hi ← high 
first ← A[lo] 

last ← A[hi] 

pivotValue  ← A[(low + high) div 2] 

if pivotValue < first then exchange A[pivotValue] ↔ A[first] 

if last < first then  exchange A[last] ↔ A[first] 

if last < pivotValue then exchange A[last] ↔ A[pivotValue] 

while lo ≤ hi do 

 while A[lo] < pivotValue do 

  lo ← lo + 1 

 while A[hi] > pivotValue do 

  hi ← hi – 1 

 if lo ≤ hi  
  then exchange A[lo] ↔ A[hi] 

   lo ← lo + 1 

   hi ← hi – 1 

if low < hi 

 then QUICK-SORT( A, low, hi ) 

if lo < high  

 then QUICK-SORT( A, lo, high ) 

Implementation – hybrid sort 
While quicksort is great on large lists, the overhead of recursions right down to one element and the setup 

complexity is often more costly than a simple sort such as insertion sort.  This hybrid approach switches to insertion 

sort when the sub-list descends below a set threshold (typically 8-10). 
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procedure QUICK-SORT( A, low, high ) 

if low + INSERT_SORT_THRESHOLD > high then 

 INSERTION-SORT( A, low, high ) 

else 

lo ← low 
hi ← high 

first ← A[lo] 

last ← A[hi] 

pivotValue  ← A[(low + high) div 2] 

if pivotValue < first then exchange A[pivotValue] ↔ A[first] 

if last < first then  exchange A[last] ↔ A[first] 

if last < pivotValue then exchange A[last] ↔ A[pivotValue] 

while lo ≤ hi do 

 while A[lo] < pivotValue do 

  lo ← lo + 1 

 while A[hi] > pivotValue do 

  hi ← hi – 1 
 if lo ≤ hi  

  then exchange A[lo] ↔ A[hi] 

   lo ← lo + 1 

   hi ← hi – 1 

if low < hi 

 then QUICK-SORT( A, low, hi ) 

if lo < high 

 then QUICK-SORT( A, lo, high ) 

Implementation – unchecked hybrid sort 
Once the first block has been insert-sorted, all the other blocks know that they will always short circuit and therefore 

not need to check the index to see if it decremented past the beginning of the array.  In this variation we don’t sort 

the blocks until the very end (after all the quick recursions).  Then we standard insert sort the first block, then we 

unchecked insert sort the remainder. 

procedure QUICK-SORT( A, low, high ) 

if low + INSERT_SORT_THRESHOLD ≤ high then 

lo ← low 

hi ← high 

first ← A[lo] 

last ← A[hi] 

pivotValue  ← A[(low + high) div 2] 

if pivotValue < first then exchange A[pivotValue] ↔ A[first] 

if last < first then  exchange A[last] ↔ A[first] 

if last < pivotValue then exchange A[last] ↔ A[pivotValue] 

while lo ≤ hi do 
 while A[lo] < pivotValue do 

  lo ← lo + 1 

 while A[hi] > pivotValue do 

  hi ← hi – 1 

 if lo ≤ hi  

  then exchange A[lo] ↔ A[hi] 

   lo ← lo + 1 

   hi ← hi – 1 

if low < hi 

 then QUICK-SORT( A, low, hi ) 

if lo < high 

 then QUICK-SORT( A, lo, high ) 
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procedure UNCHECKED-INSERTION-SORT( A, low, high ) 

for idxFirstUnsorted ←  low to high do 

 idxSink ←  idxFirstUnsorted 

 while A[idxSink] < A[idxSink – 1] do 

  exchange A[idxSink] ↔ A[idxSink – 1] 

  idxSink ← idxSink – 1 

procedure QUICK-SORT( A ) 

if empty{A} then return 

QUICK-SORT(A, 0, length{A} – 1) 

checkedSortLimit ← MIN(length{A}, INSERT_SORT_THRESHOLD) 

INSERT-SORT(A, 0, checkedSortLimit – 1) 

UNCHECKED-INSERT-SORT(A, checkedSortLimit, length{A} – 1) 

 

Reference 
http://en.wikipedia.org/wiki/Quicksort 

Selection Sort 
Selection sort is an attempt to minimize the number of swaps performed during a sort by employing a search through 

the unsorted space to locate the exact element to be placed in the sorted portion of the list. 

Algorithm 
1. for each element EBiB in the array; 

2.  we assume that the preceding elements EB1B, …, EBi-1B have already been sorted; 
3.  we search EBiB, …, EBnB for the element with the lowest value { EBkB }; 

4.  exchange elements EBiB and EBkB. 

Notes: 
❖ E represents keys. 

❖ assume the array to be 1-based. 

Implementation – random-access container (lowest) 
First, I’ll present a direct translation of the algorithm. 

procedure SELECTION-SORT( A ) 

for idxFirstUnsorted ←  0 to length{A} – 2 do 

 idxOfLowest ←  idxFirstUnsorted 

 for idx ←  idxFirstUnsorted + 1 to length{A} – 1 do 

  if A[idxOfLowest] > A[idx] then 

   idxOfLowest  idx 

 if idxOfLowest  idxFirstUnsorted then 

  exchange A[idxOfLowest] ↔ A[idxFirstUnsorted] 

Notes: 

❖ For empty arrays the first line of the algorithm results in an index being created that has a 

negative value (i.e. –1).  If your implementing language’s index type is an unsigned type 

this statement would produce number underflow. 

Implementation – random-access container (highest) 
Often a more efficient implementation can be achieved by searching for the highest value and sorting from the high 

indices and working down.  The following implements such an approach 

http://en.wikipedia.org/wiki/Quicksort
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procedure SELECTION-SORT(A) 

for idxLastUnsorted ←  length{A} – 1 downto 1 do 

 idxOfHighest ←  idxLastUnsorted 

 for idx ←  idxLastUnsorted – 1 downto 0 do 

  if A[idxOfHighest] < A[idx] then 

   idxOfHighest  idx 

 if idxOfHighest  idxLastUnsorted then 

  exchange A[idxOfHighest] ↔ A[idxLastUnsorted] 

Notes: 

❖ For empty arrays the first line of the algorithm results in an index being created that has a 

negative value (i.e. –1).  If your implementing language’s index type is an unsigned type 

this statement would produce number underflow. 

Implementation – forward iterators 
The final implementation mimics the previous but replaces array references with pointers or iterators. 

procedure SELECTION-SORT( beg, end ) 

while beg  end do 

 lowest ←  beg 

 current ←  beg 

 loop 

  current ← successor{current} 

  if current = end then 

   break 

  if value{lowest} > value{current} then 

   lowest ←  current 

 if lowest  beg then 

  exchange value{lowest} ↔ value{beg} 

 beg ← successor{beg} 

Reference 
http://en.wikipedia.org/wiki/Selection_sort 

Shell’s Sort 
Insertion sort has good performance on sorted list, but poor performance on reversed lists.  This fact inspired D. L. 

Shell to create this variation on insertion sort.  Insertion sort’s major problem is that when an element is found to be 

a great distance from its proper spot, it is only moved there one position at a time.  This fault produces a costly 

O(nP

2
P) behaviour. 

Shell’s sort eliminates this problem by segmenting the data set and performing the insertion on intermittent portions 

of the array. 

Implementation – random-access container 
procedure SHELL’S-SORT( A ) 

stepSize ←  length{A} div 2 

while stepSize > 0 do 

 for idxLastInSegment ←  stepSize to length{A} – 1 do 

  idxCurrent ←  idxLastInSegment 

  while idxCurrent ≥ stepSize and A[idxCurrent] < A[idxCurrent – stepSize] do 
   exchange A[idxCurrent] ↔ A[[idxCurrent – stepSize] 

   idxCurrent ← idxCurrent – stepSize 

 stepSize ←  stepSize div 2 

Reference 
http://en.wikipedia.org/wiki/Shell_sort 

http://en.wikipedia.org/wiki/Selection_sort
http://en.wikipedia.org/wiki/Shell_sort
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Appendix 
Document History 

Version Date Notes 

n/a 1991-2018 Material developed and published in the Gats Encyclopedia  

1.0.0 2019-02-01 Searching and sorting extracted from Gats Encyclopedia and published in 
this document. 

1.1.0 2020-02-29 Quick-Sort section expanded to include: 
• Medium of three partitioning 

• Hybrid quick-insertion sort 

• Uncheck insertion sort optimization 

 


