
GATS Page 1 – 20 G. Santor

GATS Companion to:
Searching and Sorting
Author: Garth Santor
Editors: Trinh Hān
Copyright Dates: 2020, 2019, 1991
Version: 1.1.0 (2020-02-29)

Overview
Searching and sorting are some of the most fundamental algorithms in computing, Donald Knuth devotes

an entire volume of The Art of Computer Programming to it. The subjects naturally go together because

they operated on the same data structures and the efficiency of searches are dependent on the order of the

data. Here I will present many common searching sorting algorithms and provide a commentary for

programmers.

Searching
Search algorithms are used to retrieve data stored within a data structure, or calculated in the search space

of a problem domain. We’ll only be looking that retrieval algorithms here.

Linear Searching
The simplest search algorithm is the linear search; which starts at one end of the data structure and through brute

force, tests each element in turn until the target has been found.

Time Complexity
Best Case 𝑂(1) If we are lucky, the first element we look at will be the target element.

Average

Case
𝑂 (

𝑛

2
) We may be lucky and find the target in the first spot, or unlucky and find the

target in the last spot, or any spot in between. Any location is as likely as any

other. The average case is sum of all possible time complexity outcomes
divided by the number of different outcomes:

𝑂(1) + 𝑂(2) +⋯+ 𝑂(𝑛 − 1) + 𝑂(𝑛)

𝑛
= 𝑂 (

1 + 2 +⋯+ (𝑛 − 1) + 𝑛

𝑛
)

= 𝑂(
(
𝑛(𝑛 + 1)

2)

𝑛
) = 𝑂 (

𝑛(𝑛 + 1)

2
∙
1

𝑛
) = 𝑂 (

𝑛 + 1

2
) = 𝑂 (

𝑛

2
)

Worst Case 𝑂(𝑛) The worst case is finding the target element at the very end of the search.

Implementation – Array
This implementation returns the index of the target element if found, or the size of the vector if not.

GATS Page 2 – 20 G. Santor

function LINEAR-SEARCH(A, key) returns a natural number

for i ← 1 to length{A} – 1 do

 if A[i] = key

 then return i

return length{A}

Implementation – Pointer
This implementation returns the index of the target element if found, or the size of the vector if not.

function LINEAR-SEARCH(beg, end, key) returns a pointer

current ← beg

while current ≠ end do

 if value{current} = key

 then return current

return end

Binary Searching
Binary search runs in O(logB2Bn) time on sorted data sets. An unsuccessful search requires   1log +N iterations of

the loop or calls to the function.

Time Complexity
Best Case 𝑂(1) If we are lucky, the first element we look at will be the target element.

Average
Case

𝑂(log2 𝑛) Each iteration or recursion eliminates half of the remaining elements.

Worst Case 𝑂(log2 𝑛) The worst case is to narrow down the list to a sub-list of one.

Implementation – Array, Recursive
This implementation returns the index of the target element if found, or the size of the vector if not.

function BINARY-SEARCH(A, key, low, high) returns a natural number

if low ≤ high

 then middle ← (low + high) div 2

 if key = A[middle] then return middle

 else if key < A[middle] then return BINARY-SEARCH(A, key, low, middle – 1)

 else return BINARY-SEARCH(A, key, middle + 1, high)

 else return length{A}

Implementation – Array, Iterative
This implementation returns the index of the target element if found, or the size of the vector if not.

function BINARY-SEARCh(A, key, low, high) returns a natural number
while low ≤ high do

 middle ← (low + high) div 2

 if key = A[middle] then return middle

 else if key < A[middle] then high ← middle – 1

 else low ← middle + 1

return length{A}

Implementation – Array, Iterative
A potential speed improvement can be found by reducing the amount of branching inside the loop. In this version

we always search down to a sub-list of size one, then test to see if the remaining element is the key.

GATS Page 3 – 20 G. Santor

function BINARY-SEARCH(A, key, low, high) returns a natural number

while low < high do

 middle ← (low + high) div 2

 if A[middle] < key

 then low ← middle + 1
 else high ← middle – 1

if low = high and A[low] = key

 then return low

 else return length{A}

Sorting Algorithms
Introduction
Sorting is an operation that places things into some natural order.

Sorts are said to be stable if the elements with the same key value appear in the output collection in the same order

that they appear in the input collection. Sort stability is important when sorting a collection several times, each time

by a different key. (E.g. firstly by day, secondly by month, lastly by year)

Name, best, average, worst, memory, stable, method, comparison, notes

Name Best Average Worst Memory Stable Method Comparison Notes

Bogosort 𝑂(𝑛) 𝑂(𝑛 ∙ 𝑛!) unbounded 𝑂(1) No n/a Yes

Bubble 𝑂(𝑛) — 𝑂(𝑛2) 𝑂(1) Yes Exchanging Yes Short-circuit variant

Cocktail 𝑂(𝑛) — 𝑂(𝑛2) 𝑂(1) Yes Exchanging Yes

Comb 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(1) No Exchanging Yes

Heapsort 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(1) No Selection Yes

Insertion 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) Yes Insertion Yes Can be performed
on serialized input

Merge 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛) Yes Merging Yes Can be
implemented for
external sorting

Permutation 𝑂(𝑛) 𝑂(𝑛 ∙ 𝑛!) 𝑂(𝑛 ∙ 𝑛!) 𝑂(1) No Selection No

Pigeonhole 𝑂(𝑛 + 2𝑘) 𝑂(𝑛 + 2𝑘) 𝑂(𝑛 + 2𝑘) 𝑂(2𝑘) Yes Tabulation No Assumes 𝑛 < 2𝑘

Quicksort 𝑂(𝑛log2 𝑛) 𝑂(𝑛log2 𝑛) 𝑂(𝑛2) 𝑂(log2 𝑛) No Partitioning Yes

Selection 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) No Selection Yes

Shell’s — — 𝑂(𝑛1.5) 𝑂(1) No Insertion Yes

Is-Sorted – random-access container
‘IS-SORTED’ determines if a collection is sorted. The first algorithm is implemented for a random-access collection.

function IS-SORTED(A) returns a Boolean

for i ← 1 to length{A} – 1 do

 if A[i] < A[i – 1] then

 return false

return true

GATS Page 4 – 20 G. Santor

Is-Sorted – forward iterators
function IS-SORTED(beg, end) returns a Boolean

if beg = end

 then return true

previous ← beg

current ← successor{beg}

while current ≠ end do

 if value{current} < value{previous}

 then return false

 previous ← current

 current ← successor {current}

return true

Bogo Sort
‘BOGO-SORT’ randomly shuffles the elements of the collection until satisfies ‘IS-SORTED’.

procedure BOGO-SORT(A)

while not IS-SORTED(A)

 RANDOMIZE(A)

Is this the worst sorting algorithm of all time? Perhaps its not even an algorithm but is more likely an heuristic, and

a bad one.

References
http://en.wikipedia.org/wiki/Bogosort

Bubble Sort
‘Bubble-Sort’ is the worst sorting algorithm in common use. It is both move intensive and comparison intensive.

However, its lack-lustre performance has never severely deterred novices from using it.

… in fact, the Bubblesort has hardly anything to recommend it except its catchy name. (Wirth,

1976)

Algorithm
1. repeat for as many times as there are elements less one;

2. for each element pair;

3. compare KBiB with KBi+1B, interchanging RBiB with RBi+1B if the keys are out of order.

Where K represents keys and R represents records.

Implementation – random-access container (brute force)
This first implementation is a brute-force translation of the algorithm for a random-access container.

procedure BUBBLE-SORT(A)

for pass ← 1 to length{A} – 1 do

 for idxPair ← 1 to length{A} – 1 do
 if A[idxPair] < A[idxPair – 1]

 then exchange A[idxPair] ↔ A[idxPair – 1]

This can easily be improved upon by recognizing that each pass places a minimum of one element into its sorted

place, (i.e. the sorted portion grows from the end to the beginning). Any further testing of those elements is

redundant.

Implementation – random-access container (standard)
This second implementation removes those extra comparisons.

http://en.wikipedia.org/wiki/Bogosort

GATS Page 5 – 20 G. Santor

procedure BUBBLE-SORT(A)

for pass ← 1 to length{A} – 1 do

 for idxPair ← 1 to length{A} – pass do

 if A[idxPair] < A[idxPair – 1]

 then exchange A[idxPair] ↔ A[idxPair – 1]

The next refinement removes the calculation within the inner loop’s termination condition.

procedure BUBBLE-SORT(A)

for idxEndOfPass ← length{A} – 1 downto 1 do

 for idxPair ← 1 to idxEndOfPass do

 if A[idxPair] < A[idxPair – 1]

 then exchange A[idxPair] ↔ A[idxPair – 1]

Implementation – bi-directional iterators
Now we can write the equivalent implementation for bi-directional iterators.

procedure BUBBLE-SORT(beg, end)

firstPair ← successor{beg}

while firstPair  end do

 previous ← beg

 current ← firstPair

 while current  end do

 if value{current} < value{previous}

 then exchange value{current} ↔ value{previous}

 previous ← current
 current ← successor{current}

 end ← predecessor{end}

Bubble sort’s performance on sorted and partially sorted lists can be dramatically improved by tracking the

occurrences of exchanges in each pass. If no exchanges occur, the then the list is already sorted and the algorithm

could immediately be terminated.

This algorithm performs particularly poorly on reversed lists, since every element pair is swapped on every pass.

The tests simply add overhead.

Implementation – random-access container (short-circuit)
procedure BUBBLE-SORT(A)

for idxEndOfPass ← length{A} – 1 downto 1 do

 hasSwapped ← false

 for idxPair ← 1 to idxEndOfPass do

 if A[idxPair] < A[idxPair – 1]
 then exchange A[idxPair] ↔ A[idxPair – 1]

 hasSwapped ← true

 if hasSwapped is false

 then return

Implementation – bi-directional iterators (short-circuit)
The bi-directional iterator implementation:

GATS Page 6 – 20 G. Santor

procedure BUBBLE-SORT(beg, end)

firstPair ← successor{beg}

hasSwapped ← true

while firstPair  end and hasSwapped do

 hasSwapped ← false

 previous ← beg

 current ← firstPair

 while current  end do
 if value{current} < value{previous}

 then exchange value{current} ↔ value{previous}

 hasSwapped ← true

 previous ← current

 current ← successor{current}

 end ← predecessor{end}

References
http://en.wikipedia.org/wiki/Bubble_sort

Cocktail-shaker
The cocktail-shaker sort is a variation of the bubble sort. The difference is that the bubble passes are performed in

both directions as opposed to bubble sort’s forward only passes.

Algorithm
1. while the unsorted range is greater than 1

2. for each element pair in the unsorted range;

3. compare KBiB with KBi+1B, interchanging RBiB with RBi+1B if the keys are out of order.

4. for each element pair in the unsorted range;

5. compare KBiB with KBi-1B, interchanging RBiB with RBi-1B if the keys are out of order.

6. reduce the unsorted range by 1 at each end

Where K represents keys and R represents records.

Implementation – random-access container (naïve)
The first implementation is the direct translation of the algorithm.

procedure COCKTAIL-SHAKER-SORT(A)

idxFirstUnsorted ← 0

idxLastUnsorted ← length{A} – 1

idxCurrent ← idxFirstUnsorted

while idxFirstUnsorted < idxLastUnsorted do

 while idxCurrent < idxLastUnsorted do

 if A[idxCurrent + 1] < A[idxCurrent]

 then exchange A[idxCurrent + 1] ↔ A[idxCurrent]

 idxCurrent ← idxCurrent + 1

 idxLastUnsorted ← idxLastUnsorted – 1

 while idxCurrent > idxFirstUnsorted do
 if A[idxCurrent – 1] > A[idxCurrent]

 then exchange A[idxCurrent – 1] ↔ A[idxCurrent]

 idxCurrent ← idxCurrent – 1

 idxFirstUnsorted ← idxFirstUnsorted + 1

In the case of an empty container, idxLastUnsorted is initialized to –1. However, if the index type is unsigned,

numeric underflow occurs causing to be initialized to std::numeric_limits<unsigned>::max() – a clearly invalid

location. The algorithm must either be implemented using a signed range type or be rewritten.

http://en.wikipedia.org/wiki/Bubble_sort

GATS Page 7 – 20 G. Santor

Implementation – random-access container (safe)
procedure COCKTAIL-SHAKER-SORT(A)

idxFirstUnsorted ← 0

idxEnd ← length{A}

idxCurrent ← idxFirstUnsorted

while idxFirstUnsorted < idxEnd do

 idxCurrent ← idxCurrent + 1
 while idxCurrent < idxEnd do

 if A[idxCurrent] < A[idxCurrent – 1]

 then exchange A[idxCurrent – 1] ↔ A[idxCurrent]

 idxCurrent ← idxCurrent + 1

 idxEnd ← idxEnd – 1

 idxCurrent ← idxCurrent – 1

 while idxCurrent > idxFirstUnsorted do

 if A[idxCurrent] < A[idxCurrent – 1]

 then exchange A[idxCurrent – 1] ↔ A[idxCurrent]

 idxCurrent ← idxCurrent – 1

 idxFirstUnsorted ← idxFirstUnsorted + 1

Implementation – bi-directional iterators
procedure COCKTAIL-SHAKER-SORT(beg, end)

if beg = end then

 return

previous ← beg

next ← successor{beg}

while next ≠ end do

 while next ≠ end do

 if value{previous} > value{next}

 then exchange value{previous} ↔ value{next}

 previous ← successor{previous}

 next ← successor{next}

 previous ← predecessor{previous}

 next ← predecessor{next}
 end ← predecessor{end}

 if previous = beg

 then return

 repeat

 previous ← predecessor{previous}

 next ← predecessor{next}

 if value{previous} > value{next}

 then exchange value{previous} ↔ value{next}

 until previous = beg

 previous ← successor{previous}

 next ← successor{next}

 beg ← successor{beg}

References
http://en.wikipedia.org/wiki/Cocktail_sort

Comb Sort
The comb sort is a variation of the bubble sort first published in Byte by Steven Lacy and Richard Box (Stephen

Lacy and Richard Box, "A Fast, Easy Sort", Byte, April 1991, p.315). Comb sort can also be thought of as a

variation of Shell’s sort. It uses Shell’s idea of enhancing the performance of the insert by inserting in steps or

shells of a magnitude greater than 1. The comb sort uses bubble passes that compare non-contiguous elements;

thereby moving an element closer to its correct resting spot in fewer moves. Lacy and Box investigated the gap

http://en.wikipedia.org/wiki/Cocktail_sort

GATS Page 8 – 20 G. Santor

reduction factor and found that shrink factor of 1.3 was ideal and that further performance gains occur in the gap

values of 9 and 10 are exchanged for 11.

Implementation – random-access container
procedure COMB-SORT(A)

gap ← length{A}

loop

 if gap = 9 or gap = 10

 then gap ← 11

 else if gap < 1

 then gap ← 1
 swapped ← false

 for i ← 0 to length{A} – gap – 1 do

 j ← i + gap

 if A[i] > A[j]

 then exchange A[i] ↔ A[j]

 swapped ← true

 if gap = 1 and not swapped

 then return

Note that the container can not be empty if the range type is unsigned.

References
http://en.wikipedia.org/wiki/Comb_sort

Count Sort
See ‘Pigeonhole Sort’

Heap Sort
‘Heap sort’ is what you would call a ‘good performer’. Its sorts in (log)O n n time – always!

The heap sort works by first arranging all of the elements of the container into a heap. A heap is binary tree in

which the key values of the child nodes are both less than the key value of the parent node.

A binary tree structure can be implemented in a 1-base array by employing the relationship of left-child-index is

double the parent-index, right-child-index is one greater than the left-child-index.

Once formed, the heap can be converted to a sorted list by swapping the element at the top of the heap with the last

element in the heap; shrinking the heap by one; then fixing the heap by recursively adjusting the top element until

the heap has been restored.

Implementation – random-access container (iterative)
procedure HEAP-SORT(A)

heapSize ← length{A}

for parentNode ← heapSize div 2 downto 1 do

 HEAPIFY(A, parentNode, heapSize)

for idx ← length{A} – 1 downto 1 do
 exchange A[0] ↔ A[idx]

 heapSize ← heapSize – 1

 HEAPIFY(A, 1, heapSize)

1.

1.3gap gap   

http://en.wikipedia.org/wiki/Comb_sort

GATS Page 9 – 20 G. Santor

procedure HEAPIFY(A, parentNode, heapSize)

loop

 leftNode ← parentNode × 2

 if leftNode > heapSize

 then return
 if A[leftNode – 1] > A[parentNode – 1]

 then largestNode ← leftNode

 else largestNode ← parentNode

 rightNode ← leftNode + 1

 if rightNode ≤ heapSize and A[rightNode – 1] > A[largestNode – 1]

 then largestNode ← rightNode

 if largestNode ≠ parentNode

 then exchange A[largestNode – 1] ↔ A[parentNode – 1]

 parentNode ← largestNode

 else return

Limited Heap Sort
In web search engines we often want only the k best results presented in a sorted list, where there may have been as

many as n > k results. There is no point in storing all n results, sorting them all then throwing away the n – k excess

elements.

A limited heap sort, sorts the k highest elements of a set of n elements. We first feed k elements into the heap and

build an ascending order heap (the lowest value at the top of the heap). For the remaining elements we compare the

new element to the top element of the heap replacing the top element if the new element is larger – then heapify.

Once all elements have been tested and inserted into the heap, we complete the heap sort producing an ascending

order list.

We can then reverse the list to produce a descending order list if necessary.

References
http://en.wikipedia.org/wiki/Heapsort

Insertion Sort
Insertion sort is an attempt to minimize the number of comparisons performed during a sort by shifting through

sorted space when positioning an element.

Algorithm
1. for each element EBiB in the array;

2. we assume that the preceding elements EB1B, …, EBi-1B have already been sorted;

3. we insert EBiB, into its proper place among the sorted records

where E represents keys

Implementation – random-access container
Here is an implementation for a random-access container.

procedure INSERTION-SORT(A)

for idxFirstUnsorted ← 1 to length{A} – 1 do

 idx ← idxFirstUnsorted

 while idx > 0 and A[idx] < A[idx – 1] do

 exchange A[idx] ↔ A[idx – 1]

 idx ← idx – 1

Notes
For empty arrays the first line of the algorithm results in an index being created that has a negative value (i.e. –1). If

your implementing language’s index type is an unsigned type this statement would produce numeric underflow.

http://en.wikipedia.org/wiki/Heapsort

GATS Page 10 – 20 G. Santor

Implementation – bi-directional iterators
procedure INSERTION-SORT(beg, end)

if beg = end then

 return

firstUnsorted ← beg

loop

 firstUnsorted ← successor{firstUnsorted}
 if firstUnsorted = end

 then return

 element ← firstUnsorted

 previous ← predecessor{element}

 while element ≠ beg and value{element} < value{previous} do

 exchange value{element} ↔ value{previous}

 element ← predecessor{element}

 previous ← predecessor{previous}

This implementation does present a challenge when converted to code since many modern implementations of

iterators have ‘safe’ debug versions that test to see that the iterators stay within bounds. This algorithm violates that

rule on the final line.

Implementation – bi-directional iterators (safe)
procedure INSERTION-SORT(beg, end)

if beg = end then

 return

firstUnsorted ← beg

loop

 firstUnsorted ← successor{firstUnsorted}

 if firstUnsorted = end

 then return

 element ← firstUnsorted

 previous ← element

 while element ≠ beg do

 previous ← predecessor{previous}

 if value{element} ≥ value{previous}
 then break

 exchange value{element} ↔ value{previous}

 element ← predecessor{element}

This is adjustment produces some ugly code, but languages that permit assignment inside loop conditions can

significantly clean up the implementation:

Implementation – bi-directional iterators (elegant)
procedure INSERTION-SORT(beg, end)

if beg = end then

 return

firstUnsorted ← beg

loop

 firstUnsorted ← successor{firstUnsorted}

 if firstUnsorted = end
 then return

 previous ← element ← firstUnsorted

 while element ≠ beg and value{element} < value{ previous ← predecessor{previous} } do

 exchange value{element} ↔ value{previous}

 element ← predecessor{element}

References
http://en.wikipedia.org/wiki/Insertion_sort

http://en.wikipedia.org/wiki/Insertion_sort

GATS Page 11 – 20 G. Santor

Merge Sort
Merge sort is the original divide and conquer sort. It executes in O(n logB2B n) time whether sorting vectors, linked
lists or files. The vector and file implementations require additional storage of equal size to process the merge; the

linked list version does not.

Merge sort can be processed using recursion or iteration. The recursive version is not easily adapted to files while

the iterative version adapts easily to all data types and stores.

Algorithm
1. If the list size is 0 or 1, return.

2. Split the list into 2 equal parts.

3. Merge-Sort each half-list separately.

4. Merge the two sorted lists into a single list.

Implementation – Random-access Container Using Recursion
procedure MERGE-SORT(A, beg, end)

if end – beg > 1 then
 split ← (beg + end) div 2

 MERGE-SORT(A, beg, split)

 MERGE-SORT(A, split, end)

 MERGE(A, beg, split, end)

procedure MERGE(A, low, high, end)

create a output array D the same size of A

lowWalker ← low

highWalker ← high

destWalker ← low

while lowWalker < high and highWalker < end

 if A[lowWalker] < A[highWalker]

 then D[destWalker] ← A[lowWalker]

 lowWalker ← lowWalker + 1

 else D[destWalker] ← A[highWalker]
 highWalker ← highWalker + 1

 destWalker ← destWalker + 1

if lowWalker < high

 then D[destWalker .. end – 1] ← A[lowWalker .. high – 1]

 else D[destWalker .. end – 1] ← A[highWalker .. end – 1]

A ← D

Optimization – Pre-allocate the copy vector.
The biggest performance hit in the preceding implementation is the constant reallocations of the hold array – D. The

simple solution is to have the driver function create D and then pass it to the merge function.

GATS Page 12 – 20 G. Santor

Implementation – Random-access Container Using Iteration
procedure MERGE-SORT(A)

sublistSize ← 1

while sublistSize < length{A} do

 low ← 0

 while low < length{A} do

 high ← low + sublistSize
 end ← high + sublistSize

 if end > length{A}

 then end ← length{A}

 if high > length{A}

 then high ← length{A}

 if high ≠ length{A}

 then MERGE(A, low, high, end)

 low ← low + 2  sublistSize

 sublistSize ← 2  sublistSize

Optimization – Random-access Container Using Iteration with Short-
circuiting
Another optimization is the recognition that there is unnecessary copying during the merge when the lower half of

the array empties first. The data remaining in the top half of the array is already in the correct position, so copying

those elements to the temporary store would be pointless.

hgfedcba §§§§lkji

Array A

Array D

highlow end

lowWalker highWalker

destWalker

ponm

hgfedcba §§§§lkji

Array A

Array D

highlow

end

lowWalker highWalker

destWalker

ponm

ponm

copy

lowWalker high destWalker end

Array A´

GATS Page 13 – 20 G. Santor

procedure MERGE(A, low, high, end)

lowWalker ← low

highWalker ← high

destWalker ← low

while lowWalker < high and highWalker < end

 if A[lowWalker] < A[highWalker]

 then D[destWalker] ← A[lowWalker]

 lowWalker ← lowWalker + 1

 else D[destWalker] ← A[highWalker]

 highWalker ← highWalker + 1

 destWalker ← destWalker + 1

if lowWalker < high

 then A[destWalker .. end – 1] ← A[lowWalker .. high – 1]

A[low .. destWalker – 1] ← D[low .. destWalker – 1]

Note that the block copy in line 12 must be a high to low copy since the ranges could overlap.

Implementation – Linked List with Iteration
procedure MERGE-SORT(L)

sublistSize ← 1

while sublistSize < length{L} do

 empty the holdList

 while L is not empty do
 split a list of no greater size than sublistSize from the front of L

 split another list of no greater size than sublistSize from the front of L

 Merge the two lists

 splice the merged list onto the end of the holdList

 exchange holdList ↔ L

 sublistSize ← sublistSize  2

References
http://en.wikipedia.org/wiki/Merge_sort

Ordersort
The ordersort algorithm sorts by determining the order in which elements should be arranged, then arranging them

into that order. The arrangement order is determined by locating the immediate predecessors and successors of each

element.

References
C/C++ Users Journal (September 2005)

Permutation Sort
Permutation sort is a trial-and-error type sort. Try every possible arrangement of the elements – at least one of them

is sorted.

Pigeonhole Sort
Pigeonhole sort is a special case sort capable of sorting in linear time. Counting sort requires that the input array

being sorted only contains ordinal values in a known and finite range. For our discussion we will assume that values

are in the range [0..k]. The idea is to count the number of instances of each value in the input array. Then for each

value detected in the input array, write back to the array the correct number of instances detected. However, we

write the input values back in their sorted order.

http://en.wikipedia.org/wiki/Merge_sort

GATS Page 14 – 20 G. Santor

One pass of the input array is required to accumulate the frequency table of values, and one more pass is required to

write the values back to the array. This simple approach destroys the original elements and is therefore of little

practical use. The sort can be modified to copy the original values from one array to another.

Implementation – random-access container
procedure PEGEONHOLE-SORT(A, k)

for i ← 0 to k do

 C[i] ← 0
for i ← 0 to length{A} – 1 do

 C[A[i]] ← C[A[i]] + 1

j ← 0

for i ← 0 to length{C} – 1 do

 while C[i] > 0 do

 C[i] ← C[i] – 1

 A[j] ← i

 j ← j + 1

References
http://en.wikipedia.org/wiki/Pigeonhole_sort

Quick sort
‘Quick-sort’, as named by its originator – Sir Anthony (C.A.R.) Hoare (Oxford University) is one of the smallest,

fastest and most elegant algorithms known.

The basic idea is to perform ‘swapping passes’ instead of search and swap. During each ‘swapping-pass’, low-value

elements in the top half of the list are swapped for high-value elements in the bottom half of the list. Eventually the

swapping pass would come to a middle point such that all of the values in the bottom half of the list will have a

value lower than every value in the top half of the list. The reverse – that all of the values in the top half of the list

will have a value higher than every value in the bottom half of the list – is necessarily true. The two sub-lists could

then be individually ‘quick-sorted’.

Algorithm
1. If the size of the list is 0 or 1, return.

2. Pick any element from the list. Call this value ‘pivot.’ (Av)

3. Partition the list into two distinct groups, such that the lower list only contains elements that are less than or

equal to the pivot value and the upper list only contains elements that are greater than or equal to the pivot

value.

  vxvAxL −= | and   vxvAxU −= |

4. Return the sequential join of Quicksort(L) and Quicksort(U)

Implementation – random-access container (low is pivot)
The pivot value will be partitioned into the top half of the range.

procedure QUICK-SORT(A, low, high)

if low < high

 then pivot ← PARTITION(A, low, high)

 QUICK-SORT(A, low, pivot)

 QUICK-SORT(A, pivot + 1, high)

The following partition algorithm returns the high index of the lower partition.

http://en.wikipedia.org/wiki/Pigeonhole_sort

GATS Page 15 – 20 G. Santor

function PARTITION(A, low, high) returns integer

pivotValue ← A[low]

low ← low – 1

high ← high + 1

loop
 repeat

 low ← low + 1

 until A[low] ≥ pivotValue

 repeat

 high ← high – 1

 while A[high] ≤ pivotValue

 if low < high

 then exchange A[low] ↔ A[high]

 else return high

Implementation – random-access container (random pivot)
Choosing the first element as a pivot is as good as any other for a randomly scrambled list. However, it is terrible

for a sorted or reverse-sorted list, causing each swapping pass to correctly place only one element – making the sort

perform in O(nP

2
P) time. A randomly chosen pivot often achieves the needed variation to avoid degenerate

partitioning.

function PARTITION(A, low, high) returns integer

pivot ← random value in the range [low, high]

pivotValue ← A[pivot]
low ← low – 1

…

Implementation – random-access container (middle pivot)
An alternative to the random pivot is the mid-point pivot.

function PARTITION(A, low, high) returns integer

pivot ← (low + high) div 2

pivotValue ← A[pivot]

low ← low – 1

…

Implementation – random-access container (Hoare)
Hoare’s implementation is an optimization of the mid-point pivot that merges the partition function and the

recursive function. Most significantly it does not move the pivot value to the beginning of the sub-list.

procedure QUICK-SORT(A, low, high)

lo ← low

hi ← high

pivotValue ← A[(low + high) div 2]
while lo ≤ hi do

 while A[lo] < pivotValue do

 lo ← lo + 1

 while A[hi] > pivotValue do

 hi ← hi – 1

 if lo ≤ hi

 then exchange A[lo] ↔ A[hi]

 lo ← lo + 1

 hi ← hi – 1

if low < hi

 then QUICK-SORT(A, low, hi)
if lo < high

 then QUICK-SORT(A, lo, high)

GATS Page 16 – 20 G. Santor

Implementation – medium of 3
On randomly ordered data, the midpoint pivot is no better than the low pivot, or any other single element as pivot.

Medium of three improves the odds by selecting median of the first, last, and middle elements. The hope is that the

probability of all three being skewed to one end or the other is significantly lower than the midpoint method.

procedure QUICK-SORT(A, low, high)

lo ← low

hi ← high
first ← A[lo]

last ← A[hi]

pivotValue ← A[(low + high) div 2]

if pivotValue < first then exchange A[pivotValue] ↔ A[first]

if last < first then exchange A[last] ↔ A[first]

if last < pivotValue then exchange A[last] ↔ A[pivotValue]

while lo ≤ hi do

 while A[lo] < pivotValue do

 lo ← lo + 1

 while A[hi] > pivotValue do

 hi ← hi – 1

 if lo ≤ hi
 then exchange A[lo] ↔ A[hi]

 lo ← lo + 1

 hi ← hi – 1

if low < hi

 then QUICK-SORT(A, low, hi)

if lo < high

 then QUICK-SORT(A, lo, high)

Implementation – hybrid sort
While quicksort is great on large lists, the overhead of recursions right down to one element and the setup

complexity is often more costly than a simple sort such as insertion sort. This hybrid approach switches to insertion

sort when the sub-list descends below a set threshold (typically 8-10).

GATS Page 17 – 20 G. Santor

procedure QUICK-SORT(A, low, high)

if low + INSERT_SORT_THRESHOLD > high then

 INSERTION-SORT(A, low, high)

else

lo ← low
hi ← high

first ← A[lo]

last ← A[hi]

pivotValue ← A[(low + high) div 2]

if pivotValue < first then exchange A[pivotValue] ↔ A[first]

if last < first then exchange A[last] ↔ A[first]

if last < pivotValue then exchange A[last] ↔ A[pivotValue]

while lo ≤ hi do

 while A[lo] < pivotValue do

 lo ← lo + 1

 while A[hi] > pivotValue do

 hi ← hi – 1
 if lo ≤ hi

 then exchange A[lo] ↔ A[hi]

 lo ← lo + 1

 hi ← hi – 1

if low < hi

 then QUICK-SORT(A, low, hi)

if lo < high

 then QUICK-SORT(A, lo, high)

Implementation – unchecked hybrid sort
Once the first block has been insert-sorted, all the other blocks know that they will always short circuit and therefore

not need to check the index to see if it decremented past the beginning of the array. In this variation we don’t sort

the blocks until the very end (after all the quick recursions). Then we standard insert sort the first block, then we

unchecked insert sort the remainder.

procedure QUICK-SORT(A, low, high)

if low + INSERT_SORT_THRESHOLD ≤ high then

lo ← low

hi ← high

first ← A[lo]

last ← A[hi]

pivotValue ← A[(low + high) div 2]

if pivotValue < first then exchange A[pivotValue] ↔ A[first]

if last < first then exchange A[last] ↔ A[first]

if last < pivotValue then exchange A[last] ↔ A[pivotValue]

while lo ≤ hi do
 while A[lo] < pivotValue do

 lo ← lo + 1

 while A[hi] > pivotValue do

 hi ← hi – 1

 if lo ≤ hi

 then exchange A[lo] ↔ A[hi]

 lo ← lo + 1

 hi ← hi – 1

if low < hi

 then QUICK-SORT(A, low, hi)

if lo < high

 then QUICK-SORT(A, lo, high)

GATS Page 18 – 20 G. Santor

procedure UNCHECKED-INSERTION-SORT(A, low, high)

for idxFirstUnsorted ← low to high do

 idxSink ← idxFirstUnsorted

 while A[idxSink] < A[idxSink – 1] do

 exchange A[idxSink] ↔ A[idxSink – 1]

 idxSink ← idxSink – 1

procedure QUICK-SORT(A)

if empty{A} then return

QUICK-SORT(A, 0, length{A} – 1)

checkedSortLimit ← MIN(length{A}, INSERT_SORT_THRESHOLD)

INSERT-SORT(A, 0, checkedSortLimit – 1)

UNCHECKED-INSERT-SORT(A, checkedSortLimit, length{A} – 1)

Reference
http://en.wikipedia.org/wiki/Quicksort

Selection Sort
Selection sort is an attempt to minimize the number of swaps performed during a sort by employing a search through

the unsorted space to locate the exact element to be placed in the sorted portion of the list.

Algorithm
1. for each element EBiB in the array;

2. we assume that the preceding elements EB1B, …, EBi-1B have already been sorted;
3. we search EBiB, …, EBnB for the element with the lowest value { EBkB };

4. exchange elements EBiB and EBkB.

Notes:
❖ E represents keys.

❖ assume the array to be 1-based.

Implementation – random-access container (lowest)
First, I’ll present a direct translation of the algorithm.

procedure SELECTION-SORT(A)

for idxFirstUnsorted ← 0 to length{A} – 2 do

 idxOfLowest ← idxFirstUnsorted

 for idx ← idxFirstUnsorted + 1 to length{A} – 1 do

 if A[idxOfLowest] > A[idx] then

 idxOfLowest  idx

 if idxOfLowest  idxFirstUnsorted then

 exchange A[idxOfLowest] ↔ A[idxFirstUnsorted]

Notes:

❖ For empty arrays the first line of the algorithm results in an index being created that has a

negative value (i.e. –1). If your implementing language’s index type is an unsigned type

this statement would produce number underflow.

Implementation – random-access container (highest)
Often a more efficient implementation can be achieved by searching for the highest value and sorting from the high

indices and working down. The following implements such an approach

http://en.wikipedia.org/wiki/Quicksort

GATS Page 19 – 20 G. Santor

procedure SELECTION-SORT(A)

for idxLastUnsorted ← length{A} – 1 downto 1 do

 idxOfHighest ← idxLastUnsorted

 for idx ← idxLastUnsorted – 1 downto 0 do

 if A[idxOfHighest] < A[idx] then

 idxOfHighest  idx

 if idxOfHighest  idxLastUnsorted then

 exchange A[idxOfHighest] ↔ A[idxLastUnsorted]

Notes:

❖ For empty arrays the first line of the algorithm results in an index being created that has a

negative value (i.e. –1). If your implementing language’s index type is an unsigned type

this statement would produce number underflow.

Implementation – forward iterators
The final implementation mimics the previous but replaces array references with pointers or iterators.

procedure SELECTION-SORT(beg, end)

while beg  end do

 lowest ← beg

 current ← beg

 loop

 current ← successor{current}

 if current = end then

 break

 if value{lowest} > value{current} then

 lowest ← current

 if lowest  beg then

 exchange value{lowest} ↔ value{beg}

 beg ← successor{beg}

Reference
http://en.wikipedia.org/wiki/Selection_sort

Shell’s Sort
Insertion sort has good performance on sorted list, but poor performance on reversed lists. This fact inspired D. L.

Shell to create this variation on insertion sort. Insertion sort’s major problem is that when an element is found to be

a great distance from its proper spot, it is only moved there one position at a time. This fault produces a costly

O(nP

2
P) behaviour.

Shell’s sort eliminates this problem by segmenting the data set and performing the insertion on intermittent portions

of the array.

Implementation – random-access container
procedure SHELL’S-SORT(A)

stepSize ← length{A} div 2

while stepSize > 0 do

 for idxLastInSegment ← stepSize to length{A} – 1 do

 idxCurrent ← idxLastInSegment

 while idxCurrent ≥ stepSize and A[idxCurrent] < A[idxCurrent – stepSize] do
 exchange A[idxCurrent] ↔ A[[idxCurrent – stepSize]

 idxCurrent ← idxCurrent – stepSize

 stepSize ← stepSize div 2

Reference
http://en.wikipedia.org/wiki/Shell_sort

http://en.wikipedia.org/wiki/Selection_sort
http://en.wikipedia.org/wiki/Shell_sort

GATS Page 20 – 20 G. Santor

Appendix
Document History

Version Date Notes

n/a 1991-2018 Material developed and published in the Gats Encyclopedia

1.0.0 2019-02-01 Searching and sorting extracted from Gats Encyclopedia and published in
this document.

1.1.0 2020-02-29 Quick-Sort section expanded to include:
• Medium of three partitioning

• Hybrid quick-insertion sort

• Uncheck insertion sort optimization

